

 PNNL-27387

A Mathematical
Representation of System
Architectures
Application to Grid Architecture

March 2018

JD Taft

A Mathematical Representation of
System Architectures
Application to Grid Architecture

JD Taft1

March 2018

1 Chief Architect for Electric Grid Transformation, Pacific Northwest National
Laboratory

iii

Contents

1.0 Background/Purpose ... 1
2.0 Overview .. 1
3.0 Architecture Definition ... 1
4.0 Two Classes of Characteristics ... 2
5.0 Mathematical Preliminaries .. 3

5.1 Graphs .. 3
5.2 Topological Structure, Norms and Metrics, and Orthogonality ... 4
5.3 Vectors, Matrices, and Matrix Notation ... 5

6.0 Architecture Representation ... 5
6.1 Architecture Graphs and Mappings .. 6
6.2 Converting Architecture Graphs to Matrices ... 9
6.3 Architectural Detractors ... 10
6.4 Qualities as Basis Vectors .. 11

7.0 Architecture Analysis and Optimization .. 12
7.1 Meta-Structure Analysis and Complexity .. 12
7.2 Differential Analysis of Architectures ... 13
7.3 Architecture Optimization .. 13

8.0 Application to Grid Architecture .. 13
9.0 Final Comments .. 16

iv

Figures

1 Architectural Elements and Systems .. 2
2 Architecture Analysis/Evaluation ... 2
3 Architecture Synthesis .. 3
4 Example Graph ... 4
5 Example Tripartite Architecture Graph Nodes ... 6
6 Example Properties to Qualities Mapping .. 7
7 Example Completed Mapping .. 7
8 A More Realistic Mapping Example .. 8
9 Architectural Mapping Flow ... 11

1

1.0 Background/Purpose

Much architecture work is ad hoc in nature, leading to difficulties in comparing architectural alternatives
and determining how well a given proposed architecture fits the purposes for which it was devised. The
lack of underlying rigor in the representation of architectures in terms of how elements contribute (or do
not) to the goals of the architecture limits our ability to be analytical about architecture. The purpose of
this work is to provide an approach to treating system architectures analytically, with the eventual goal of
being able to quantify objectively the goodness of fit of system architectures, to be able to compare
architectures rigorously, and to be able to optimize architectures with respect to specified goals.

2.0 Overview

The approach taken in this work is to represent architectural characteristics in a formal abstract space
framework, and then to use graphs to map architectural elements to the characteristics, to convert the
graphs to matrix representations, and finally to use matrix algebra, graph theory, and the theory of
abstract spaces to develop both norms and metrics for system architectures. The abilities to evaluate,
compare, and optimize architectures will follow from these essentials.

By mapping architectural elements in the manner described above, we hope to make it possible to draw
upon the vast bodies of knowledge already available to us, in particular the matrix methods. With that in
mind, we will drive the formulation in the direction of such tools, even when it might appear that other
approaches could serve. Ultimately, we wish to encapsulate much of what follows into software tools so
that practicing architects and others might be able to use the methods without having to master arcane
mathematics, much in the manner one might use a financial spreadsheet without having to manipulate all
of the financial equations directly.

3.0 Architecture Definition

An architecture is an abstract depiction of a system, consisting of black box components, structure,
and externally visible characteristics. An architecture is not a design, nor is it just about interoperability.
It is the highest level representation of a complex system and its purposes are several:

• Enable reasoning about a system’s structure and behavior

• Enable prediction of system characteristics

• Manage system complexity

• Facilitate communication among stakeholders (internal and external)

• Manifest earliest design decisions/constraints

• Identify gaps in theory, technology, organization, regulation…

• Identify/define interfaces and platforms

Structure provides the framework within which components combine to yield systems that deliver
specific capabilities (see Figure 1).

2

Figure 1. Architectural Elements and Systems

4.0 Two Classes of Characteristics

Consider the nature of the characteristics by which we can describe a system architecture. There is much
in the literature about “ility” words (reliability, flexibility, etc.), and such terms are often bandied about
when the purposes and values of system architectures are discussed. Unfortunately, most of these terms
are not rigorously and unambiguously defined, and do not have mathematical bases that would make them
susceptible to analytical treatment. There is a second, more subtle problem: there are really two sets of
characteristics to consider and they come from two different points of view. Mixing these
indiscriminately (a common situation) leads to confusion that inhibits the ability to understand and
compare architectures.

We divide the characteristics of a system architecture into two sets, arbitrarily labeled qualities and
properties.

Qualities are those characteristics seen by the users of an architecture (more properly: the system that
implements the architecture) and are closely related to the value of the architecture and therefore its
goodness of fit. One may think of qualities as high level requirements expressed qualitatively or
quantitatively.

Properties are those characteristics seen by the developers, builders, and operators of a system represented
by the system architecture that are needed to deliver the qualities desired by the users. We recognize that
system properties emerge from two attributes: intrinsic characteristics and functional capabilities. System
intrinsic characteristics are mostly associated with structure whereas system functional capabilities are
mostly associated with components. System properties emerge from structure and components and are
what enable the system qualities to be manifested. Figure 2 below illustrates the concept.

Figure 2. Architecture Analysis/Evaluation

Many of the intrinsic characteristics of a system are determined by its structures (in particular key
constraints on system capabilities) and functional capabilities are largely determined by the components.

3

As the diagram illustrates, this is not a strict separation; hence the cross coupling.1 This diagram is the
beginning of the general process of mapping architectural elements in such a way that they can be treated
analytically.

In the synthesis of architecture, we start with the user needs and follow the flow illustrated in Figure 3.
From this standpoint, we can view the qualities as residing in the problem domain, and the properties as
residing in the solution domain.

Figure 3. Architecture Synthesis

For the remainder of this paper we will focus on the analysis of architectures, and thus on the model of
Figure 2. It will be convenient however to work backwards from qualities to architectural elements in the
process of developing the representation schema.

5.0 Mathematical Preliminaries

In what follows, we will make use of a number of mathematical notions and while we will keep the
complexity to a minimum, some use of advanced concepts and notations will be necessary. This section
outlines the tools we will employ.

5.1 Graphs

A graph G(V,E) is a structure which consists of a set of vertices V = {v1, v2, …} and a set of edges E =
{e1, e2,…}. Each edge connects or is incident to an unordered pair of (not necessarily distinct) vertices.2
A wide variety of graph types and graph characteristics have been defined, and the mathematics of graph
theory is extensive.

Graphs are often depicted diagrammatically, such as in the example of Figure 4, with vertices shown as
circles or dots, and edges as straight or curved lines. Vertices and edges may be labeled and edges may
have values and/or directionality associated with them. A graph for which the edges have directionality
(indicated by an arrowhead), the graph is referred to as a directed graph or digraph.

1 For this reason, the concepts of form and function do not have simple 1:1 mappings with structure and
components.
2 Shimon Even, Graph Algorithms, Computer Science Press, 1979.

4

Figure 4. Example Graph

A k-partite graph is a graph whose vertices are or can be partitioned into k different independent sets. For
k = 3, the graph is called a tripartite graph.

Various representations of graphs have been developed for purposes of computer processing, including
incidence lists and adjacency matrices.

5.2 Topological Structure, Norms and Metrics, and Orthogonality

We shall employ a number of concepts from the theory of abstract spaces.3 Here we list the key
definitions very briefly.

A metric space is a nonempty set X and a function that maps X to the real line. The mapping must satisfy
four axioms that define the essence of a metric, including non-negativity, reflexivity, and the triangle
inequality. In essence, a metric is a measure of distance.

A linear space is a nonempty set X and two operations defined on the set: addition and scalar
multiplication. These operations must satisfy seven conditions, including existence of elements 0 and 1,
associativity, commutativity, existence of unique negatives for every element of X, and superposition.

Norms are functions on a linear space that satisfy four conditions, including non-negativity, scaling, and
the triangle inequality for all elements of X. A norm is essentially a measure of size and can be used to
induce a metric by applying other properties of linear spaces.

An inner product space is a real or complex linear space with an inner product - a function on pairs of
elements of X that maps to the real line and that satisfies four conditions: distribution, scaling, non-
negativity, and conjugate equality. For such a space, the norm of an element of X is equal to the square

3 For a more complete review discussion, see Andrew P. Sage and Chelsea C. White III, Optimum Systems Control,
Prentice Hall, 1977, pp. 387-394.

5

root of the inner product of an element with itself. A complete4 inner product space is called a Hilbert
space.

Two elements x and y of an inner product space are said to be orthogonal if their inner product is zero.
Orthogonality corresponds to the geometric concept of perpendicularity.

5.3 Vectors, Matrices, and Matrix Notation

The algebra, calculus, and differential equations of vectors and matrices are very well established. We
will make use of this body of knowledge and here we provide some basic notation definitions.

• A set of mn real or complex scalar quantities arranged in a rectangular array of n columns and m rows
is a matrix of order (m, n) or m x n.

• A set of n quantities arranged in a single column of a matrix of order (n, 1) is a (column) vector.

• A set of n quantities arranged in a single row of a matrix of order (1, n) is a (row) vector.

• Transposition is the operation of interchanging rows and columns of a matrix. A column vector can
be converted to a row vector by transposition.

• A matrix inverse is a matrix such that the product of the matrix and its inverse is in identity matrix.

Notation:

• F – matrix (bold capital letter)

• FT – matrix transpose (superscript capital T denotes transpose)

• F-1 – matrix inverse (superscript -1 denotes inverse)

• x – column vector (bold lower case letter)

• xT – row vector (transpose of a column vector)

• a or A – scalar quantity (non-bold letter)

• diag(x) – square matrix constructed by making the elements of x the diagonal elements of the matrix;
all other entries in the matrix are zero

• 1n – column vector of order n where every entry is equal to 1

• In – identity matrix of order n x n (main diagonal entries equal to 1; all other entries equal to 0)

6.0 Architecture Representation

In this section we will develop the representation of system architectures in a Hilbert space. The process
involves creating a tripartite graph, mapping elements into the graph, and then converting the graph to a
linear space representation. The development of norms and metrics will proceed from there.

4 A metric space is said to be complete if each Cauchy sequence in it is a convergent sequence. A Banach space is a
complete (under the metric induced by the norm) normed space.

6

6.1 Architecture Graphs and Mappings

We begin by creating two levels of mappings: properties to qualities and architectural elements to
properties. Here we presume that a set of system qualities and a set of system properties have been
selected. The choice of qualities and properties is dependent on the type of system and the problem
domain involved. This section will focus on the mechanics of developing representations; a later section
will consider the use of this method for electric power grids and will discuss qualities and properties for
grids.

Map the architecture elements, properties, and qualities in the form of a tripartite directed graph. In
general, these graphs are not complete. The mappings will be indicated by directed edges, where the
edges have values associated with them that represent the contribution to or level of support for the target
property or quality. Hence the architectural elements provide support for one or more properties; the
properties provide support for one or more qualities. The presence of an edge indicated support; the value
associated with the edge indicates the magnitude of the support or contribution.

Step 1: Set up the nodes for the tripartite graph

Start by drawing the architectural elements, properties and qualities as three sets of nodes, as shown in
Figure 5. In practice, the nodes may be boxes with labels naming the individual elements, properties and
qualities.

Figure 5. Example Tripartite Architecture Graph Nodes

In most cases, n>> m > k.

Step 2: Map properties to qualities

Proceed by mapping the properties (middle column) to the qualities as shown for in Figure 6. For each
case where a property supports of contributes to a quality, draw an arrow from property to quality.
Continue until all contributions are mapped. For the moment, the values of the mapping edges will be
treated as binary, e.g. if an edge is present, its value of one; if not, its value is zero. Non-binary valuations
are discussed below.

7

Figure 6. Example Properties to Qualities Mapping

Step 3: Map architectural elements to properties

Finally, map the architectural elements to the system properties to finish the graph as shown below in
Figure 7. As with the previous part, for each case where an element supports of contributes to a property,
draw an arrow from element to property.

Figure 7. Example Completed Mapping

Generally, the number of architectural elements will be very much larger than the number or properties
and it may be convenient to construct the graph in two sections – once with just the architectural
components and once with the architectural structures. Ultimately these will be merged

The reason for doing the mapping in two stages (properties → qualities and elements → properties) is that
it is generally very difficult to perform the mapping from elements to qualities in one step, especially
when the links have non-binary values. Even with binary mappings, a one-step mapping is difficult. This
is because the properties and qualities exist in different domains, as described above and this creates
confusion about the connections between elements and characteristics. The two stage mapping provides
structure and order to the mapping process that makes this problem manageable (keep in mind that real
problems are much more complex than these simple diagrams make it appear). A slightly more realistic
example using just architectural structures is shown in Figure 8.

8

Figure 8. A More Realistic Mapping Example

In practice, the mapping from properties to qualities will generally be static, but the mapping from
architectural elements to properties will change as the architecture is developed. In fact, when comparing
architectures as described below, it will be necessary to keep the property-to-quality mapping constant
across architectural alternatives.

While a first approximation to the mappings can be made with binary-values links, a more nuanced
mapping is possible by relaxing this constraint to allow for non-negative real values for links. The values
are non-negative because the arrows represent contribution or support. The issue of how an element may
detract from a property or quality is handled later.

The determination of non-binary link values is difficult in general. Three primary methods are available:

1. Use of subject matter expertise, engineering studies, and empirical data to place values on the
contributions

2. Use of simulation studies to determine relative contributions

3. Use of graph-theoretic methods and measures

9

This last approach is developmental and is based on introducing measures from graph theory and
algebraic topology into the network structure representations of architectural structures and does not
address contributions by components. Fortunately, component contributions are more easily handled by
the first two methods. Later we shall explore a use for the binary version of the L matrix in terms of
architecture complexity.

6.2 Converting Architecture Graphs to Matrices

In the next section, we show how to transform the representation to the domain of linear spaces to
develop the Architecture Equation. We begin by converting the two sets of mappings to matrices. In order
to do this we define three vectors:

• q – the k x 1 vector of qualities

• p – the m x 1 vector of properties

• e – the n x 1 vector of architectural elements

For the elements vector e, each entry indicated the presence of the corresponding architectural element
with a one or its absence with a zero. As we shall see later, we may turn architectural elements “on” and
“off” (include or exclude them) by setting the value of the corresponding element of e.

Consider the mapping from elements to properties as one transition and the mapping from properties to
qualities as a second transition, and define a mapping matrix for each. Hence we define the left mapping
matrix L as an m x n real matrix such that

 p = L e.

The L matrix may be assembled from the left portion of the graph by setting matrix entry (i,j) to the value
of the link connecting element i (1 <= I <= n) with property j (1 <= j <= m). If no link exists for any (i,j),
the corresponding L matrix entry is set to zero. Thus, for the example of Figure 7,

Thus the elements of the property vector attain values by summing architectural elements into them. The
L matrix is the architectural element to property mapping. This matrix may vary with alternative
architectures for the same problem since the architectural elements may vary.

Next we define the right mapping matrix R as a k x m real matrix such that

 q = R p.

The R matrix may be assembled from the right portion of the graph by setting R matrix entry (i,j) to the
value of the link connecting property i (1 <= I <= m) with quality j (1 <= j <= k). If no link exists for any
(i,j), the corresponding matrix entry is set to zero. Thus, for the example of Figure 7,

10

The R matrix is the property to quality mapping. This matrix is normally constant for a given
architectural problem.

Finally, we may compute the basic mapping from architectural elements to qualities as

 q = R Le.

6.3 Architectural Detractors

Some architectural elements may detract from certain properties or from certain qualities instead of
contributing to them. Most notably, some elements that add capability can also reduce reliability. Rather
than putting these detractors into the graphs, we model them by introducing detraction matrices directly to
map these effects. We define the property detraction matrix Dp as a matrix with the same dimensions as L
that obeys the following constraints:

 Dp(I,j) = 0 if L(I,j) ≠ 0

 Dp ≥ 0

So, elements of Dp are non-negative and are zero if the corresponding link in L exists (is non-zero). This
constraint exists so that elements of L represent gross contribution. We then introduce the property
detractor into the mapping equation as

 q = R (L – Dp) e.

Quality detraction can be modeled in a similar fashion. We define quality detractor matrix Dq with the
same dimensions as the matrix product RL (i.e. k x n). Introducing the quality detractor into the equation
for q yields

 q = [R (L – Dp) – Dq] e.

This then is the architecture equation, and we may compute the total mapping matrix T as

 T = R (L - Dp) – Dq.

The T matrix is the complete mapping from architectural elements to qualities. We can envision the
computational flow as shown in Figure 9 below.

11

Figure 9. Architectural Mapping Computation Flow

6.4 Qualities as Basis Vectors

Consider the set of qualities as a set of orthonormal basis vectors in a Hilbert space. The T matrix can
therefore be considered to be the projection of the architecture onto this set of basis vectors (the qualities)
in a complete inner product space. For this to work, the qualities must be defined in a way that is
mathematically compatible with the foregoing statement which is why we have needed the formalisms
introduced above.5 We shall designate the basis set of orthonormal quality vectors as q0.

We may view q as being the architecture vector for any particular architecture. Now let us introduce an
architecture reference vector by weighting the quality basis vectors. We define vector w of size k x 1
(same size as q and q0) to be a vector of relative weightings for the qualities, that is, each wi is a non-
negative real value that expresses the relative importance of the corresponding quality to the stakeholders.
The vector w must satisfy the constraints

 wi ≥ 0; 1≤ i ≤ k

 ∑ wi = 1.0.

We can now define the normalized architectural reference vector r as

 r = wTq0 / || wTq0 ||

The reference vector represents the idealized architectural direction. We may now introduce a norm and a
metric for architectures.6 First we introduce the architectural alignment metric as the real scalar quantity

 A(q , r) = < q , r > /[||q|| ||r||],

5 We hypothesize but have not proven that if the qualities are orthogonal, the properties do not have to be.
6 Here we are not using the norm to induce the metric. They are both intended for characterization of architectures.

12

where < , > is the inner product of vectors and ||x|| is the l2 norm7 of the vector x. This metric measures the
distance between the architectural reference vector and the specific architecture vector. We may calculate
the distance between two architectures q1 and q2 in the same manner as

 A(q1,q2) = <q1 , q2> / (||q1|| ||q2||)

The inverse cosine of A is therefore the angle between two architectures.

Second, we introduce the intuitive concept of architectural strength, which is a measure of how
aggressively an architecture supports the architectural reference. The strength of q with respect to r is a
real scalar defined as

 S(q , r) = < q , r > /eTe.

That is to say, strength is the magnitude of the projection of the architecture vector onto the reference
vector, divided by the number of architectural elements employed. The reason for dividing by the number
of elements is to keep the strength norm from growing just due to the total number of architectural
elements. This combats a tendency to add complexity for its own sake.

The combination of the alignment metric and the strength norm may be thought of as indicating the
effectiveness of the architecture in meeting the requirements of the stakeholders, as reflected in the
quality and property mappings.

7.0 Architecture Analysis and Optimization

Given the graph and matrix representation schema for system architectures, we may consider how to
further characterize architectures and how to perform differential analysis and optimization of
architectures.

7.1 Meta-Structure Analysis and Complexity

We may designate the 5-tuple [e, L, R, Dp, Dq] as an architecture, for mathematical purposes. Given this
matrix representation of a system architecture, we examine the structure of the matrices to gain
understanding about the underlying architecture – a process just starting to be developed that we refer to
as architectural meta-structure analysis.

We can compute the following, using the binary version8 of the L matrix:

• Number of architectural elements: eTe

• Number of links (graph edges) in L: trace (LTL) or trace (LLT)

• Maximum element fan-out (number of links exiting the element): ||L||1 (max column sum)

• Largest property fan-in (links connecting into a property): ||LT||1 (max row sum)

We may consider this set of values as characterizations of the complexity of the architecture. 9

7 Also known as Euclidean norm; intuitively, the length of the vector.
8 Entries are either one or zero.
9 Other analyses of the matrices may yield further structural insights but have not yet been pursued.

13

7.2 Differential Analysis of Architectures

Two differential analysis problems present themselves:

• Determining incremental impact of individual architectural elements or element sub-groups

• Comparing alternative architectures

Both problems are facilitated by the availability of the alignment metric and the strength norm. For the
element/sub-group differential analysis, one may simply set selected elements of the e vector to zero to
“turn off” those elements and then compare the resultant values of A and S to those of the baseline case.
The L and R matrices are kept constant during this exercise, as are the Dp and Dq matrices.

Comparing architectures is a matter of doing the same for entire architecture. This means that while the R
matrix will be constant, the e vector and the L matrix would likely change for each proposed architecture.
The Dp and Dq matrices may change as well.

7.3 Architecture Optimization

Once differential comparison are possible, then we may consider the possibility of optimizing an
architecture. This can take on several forms.

1. Choose the best subset of elements in e by maximizing A or S with respect to e.

2. Choose the best subset of e that has G or fewer elements by maximizing A or S subject to the
constraint.

 eTe ≤ G

3. Choose the best subset of e to maximize A subject to an upper bound budget constraint

 cTe ≤ B

where c is a vector of element costs and B is the budget constraint.

4. Choose the subset of e that maximizes A subject to a minimum bound constraint on S.

Clearly, one could combine constraints for more complex optimizations. Given the combinatorial
complexity involved, genetic optimization methods may apply.

8.0 Application to Grid Architecture

All of the foregoing may be applied to grid architectures in particular. The structures of grid architecture
are defined in terms of seven structure classes. Properties are often listed in terms of “ility” words, and
can be numerous. While the electricity industry has a tendency to mix qualities and properties, the Grid
Architecture discipline, these are explicitly separated. There is no wide consensus on grid characteristics
(either properties or qualities) and as mentioned, “ility” words predominate in most discussions.

The following is a set of grid system qualities being developed based on the principles described above.
Note that none of the qualities is an “ility”. Completion of these definitions and proof of mutual
orthogonality of the entire set based on their mathematical definitions are tasks yet to be completed.

14

1. DELIVERS – the grid provides the amount of energy customers want, when they want it, and in the
form they want

2. CONSERVES – uses all resources sparingly, especially those that are not replaceable

3. PRESERVES – minimizes wastes and emissions

4. PROTECTS – provides safety or operates safely for itself, users, utility workers, and the public in
general

5. ADAPTS – adjusts to changing conditions on both fast (parametric or modal) and slow (structural)
time scales

6. ENABLES – provides broad access and support for customer service, energy innovation, and value
realization

7. MERITS – provides sufficient useful capability and public good to support continued public and
private investment

Item 1 addresses basic functionality, and so encompasses many operational excellence issues that tend to
get overlooked in grid “ility” discussions. Items 2 and 3 decouple input issues from output issues,
something that is often overlooked when specifying qualities like “clean and sustainable.” Such
decoupling leads to better definitions of unambiguous norms. Item 4 addresses the grid’s responses to
failures and attacks. Items 5 and 6 both address aspects of how the grid changes. Item 7 addresses
economic factors but in a broader manner than affordability alone.

To give these a mathematical foundation, we need norms for each. While this work is still in progress, the
following are suggestions for how this can be done for the seven qualities listed above.

DELIVERS –

CONSERVES –

15

PRESERVES –

PROTECTS –

ADAPTS –

Must account for short and long time scales and for multiple simultaneous adaptations

Define adaptation over time:

 s = any particular adaptation;

 e = architectural element;

 t = time

Then the time rate of progress of an adaptation is:

 ∂s/∂t = ∂s/∂e x ∂e/∂t

where ∂s/∂e is defined to be a “flex factor.” Flex factors quantify a system’s ability to change with
respect to a particular architectural element.

Now define the adaptation rate vector [∂s i/∂t] as linear transformation of the architectural element change
vector [∂ej/∂t]. For a collection of adaptations, the set of flex factors forms a matrix F:

 F = [∂s i/∂ej].

16

Then the ADAPTS norm is the Frobenius norm10 of matrix F. Estimation of flex factors is likely to be
difficult and of course would be grid and organization-specific.

ENABLES –

• α: algebraic connectivity/vertex connectivity

• β: Isoperimetric number (Cheeger constant)

• γ: open standard interfaces/total interfaces

• σ: endpoint/app scalability

 σ = N/[1 + C1 (N-1) +C2 N(N-1)]

 C1 = contention C2 = coherency

 N = number of load generators or processors

 ENABLES Norm = Σ [α
i
] [β

i
] [γ

i
] [σ

i
]

The approach to structural adaptation characterization is via graph theory. Algebraic connectivity is the
second smallest eigenvalue of the graph Laplacian. The ratio α is intended to measure synchronizability
and overall connectedness. Cheeger constant is used to measure scalability via average bottlenecking of
an architectural structure represented as a graph. The interface ratio is intended to measure average ease
of connection or integration of devices. Lastly, σ is intended to measure scalability for both endpoints and
applications. The norm is a compounding of these individual measures.

MERITS –

This dimension is intuitive but analytically elusive. Some possibilities are Return on Equity and Social
Return on Investment (SROI) but these are not rigorously defined for the purpose at hand. A proper norm
must capture number of grid users, be able to incorporate time windows, and encapsulate properties like
affordability and financeability (bankability).

9.0 Final Comments

In this paper we have offered a new approach to characterization of system architectures. The approach
makes use of a two-stage definition of the characteristics that describe the suitability of an architecture to
the purposes of both the users (qualities) and the builder/operators of the systems described in the
architecture (properties). Graph theory is then used to map architecture elements to properties and
properties to qualities. The graphs are translated into matrices and linear space mathematics methods are
applied to develop ways to compare architectures and architectural alternatives.

Much remains to be resolved in this approach:

• Methods for computing or estimating mapping values are needed

• Proofs of the mutual orthogonality of the qualities are needed

10 The sum of the absolute squares of the elements of the matrix, (Golub and van Loan 1996, p. 55). Also can be
calculated as the square root of the trace of FFT

.

17

• Definition of a norm for the MERIT quality is needed

• Tools that implement the graph and matrix representations and manipulations, as well as potentially
the optimizations are needed, since real architectures are too complex for hand calculation

Completion of these items will advance the theory of system architecture by providing a rigorous
approach to system architecture quantification, evaluation, and optimization.

902 Battelle Boulevard
P.O. Box 999
Richland, WA 99352
1-888-375-PNNL (7665)

	Contents
	Figures
	1.0 Background/Purpose
	2.0 Overview
	3.0 Architecture Definition
	4.0 Two Classes of Characteristics
	5.0 Mathematical Preliminaries
	5.1 Graphs
	5.2 Topological Structure, Norms and Metrics, and Orthogonality
	5.3 Vectors, Matrices, and Matrix Notation

	6.0 Architecture Representation
	6.1 Architecture Graphs and Mappings
	6.2 Converting Architecture Graphs to Matrices
	6.3 Architectural Detractors
	6.4 Qualities as Basis Vectors

	7.0 Architecture Analysis and Optimization
	7.1 Meta-Structure Analysis and Complexity
	7.2 Differential Analysis of Architectures
	7.3 Architecture Optimization

	8.0 Application to Grid Architecture
	9.0 Final Comments

